La propagation de bactéries E. coli peut être modélisée par une équation cinétique, prise dans un scaling hyperbolique pour faire apparaître un phénomène de transport. En utilisant une transformation de Hopf-Cole pour mettre en évidence la propagation de fronts, on peut montrer que le régime asymptotique est gouverné par une équation de Hamilton-Jacobi.
L'analyse numérique des équations cinétiques est compliquée par l'apparition de termes raides lorsqu'on s'approche des régimes asymptotiques. Les schémas Asymptotic Preserving (AP) permettent de s'affranchir de ces problèmes, puisqu'ils assurent la stabilité du schéma le long de la transition vers les régimes asymptotiques.
Après avoir rappelé brièvement le modèle et les particularités de l'asymptotique considérée, je présenterai la construction d'un schéma AP pour ce cadre dans lequel le problème considéré est non-linéaire.