Asymptotically accurate high-order space and time schemes for the Euler system in the low Mach regime
1 : Department of Mathematics and Computer Science, University of Ferrara
2 : CNRS et Institut de Mathématiques de Bordeaux
(IMB)
-
Site web
CNRS : UMR5251, Université Sciences et Technologies - Bordeaux I, Université Victor Segalen - Bordeaux II
351 cours de la Libération 33405 TALENCE CEDEX -
France
3 : Institut de Mathématiques de Toulouse
(IMT)
-
Site web
PRES Université de Toulouse, CNRS : UMR5219
UPS IMT, F-31062 Toulouse Cedex 9, France INSA, F-31077 Toulouse, France UT1, F-31042 Toulouse, France UT2, F-31058 Toulouse, France -
France
In this communication, we present a second-order accurate and asymptotic preserving numerical method for the Euler system in the low Mach limit. First, we introduce the model and a first-order uniformly stable implicit-explicit (IMEX) numerical method which preserves the low Mach limit of the Euler system. Then, we consider a model advection equation and we develop a second-order strategy in the framework of the IMEX schemes, with specific limitation techniques to control the oscillations induced by the accuracy increase. Finally, we apply this strategy to the Euler system and we display several numerical results, thus highlighting the properties of the proposed scheme.